GAN Colorization Code
2022. 8. 28. 15:33ㆍArtificialIntelligence/DeepLearning
참고한 코드: https://github.com/mrzhu-cool/pix2pix-pytorch
network.py
import torch
import torch.nn as nn
from torch.nn import init
import functools
from torch.optim import lr_scheduler
def get_norm_layer(norm_type='instance'):
if norm_type == 'batch':
norm_layer = functools.partial(nn.BatchNorm2d, affine=True)
elif norm_type == 'instance':
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
elif norm_type == 'switchable':
norm_layer = SwitchNorm2d
elif norm_type == 'none':
norm_layer = None
else:
raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
return norm_layer
def get_scheduler(optimizer, opt):
if opt.lr_policy == 'lambda':
def lambda_rule(epoch):
lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.niter) / float(opt.niter_decay + 1)
return lr_l
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
elif opt.lr_policy == 'step':
scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1)
elif opt.lr_policy == 'plateau':
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5)
elif opt.lr_policy == 'cosine':
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.niter, eta_min=0)
else:
return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)
return scheduler
# update learning rate (called once every epoch)
def update_learning_rate(scheduler, optimizer):
scheduler.step()
lr = optimizer.param_groups[0]['lr']
print('learning rate = %.7f' % lr)
def init_weights(net, init_type='normal', gain=0.02):
def init_func(m):
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, gain)
init.constant_(m.bias.data, 0.0)
print('initialize network with %s' % init_type)
net.apply(init_func)
def init_net(net, init_type='normal', init_gain=0.02, gpu_id='cuda:0'):
net.to(gpu_id)
init_weights(net, init_type, gain=init_gain)
return net
def define_G(input_nc, output_nc, ngf, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, gpu_id='cuda:0'):
net = None
norm_layer = get_norm_layer(norm_type=norm)
net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9)
return init_net(net, init_type, init_gain, gpu_id)
# Defines the generator that consists of Resnet blocks between a few
# downsampling/upsampling operations.
class ResnetGenerator(nn.Module):
def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=9, padding_type='reflect'):
assert(n_blocks >= 0)
super(ResnetGenerator, self).__init__()
self.input_nc = input_nc
self.output_nc = output_nc
self.ngf = ngf
if type(norm_layer) == functools.partial:
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
self.inc = Inconv(input_nc, ngf, norm_layer, use_bias)
self.down1 = Down(ngf, ngf * 2, norm_layer, use_bias)
self.down2 = Down(ngf * 2, ngf * 4, norm_layer, use_bias)
model = []
for i in range(n_blocks):
model += [ResBlock(ngf * 4, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)]
self.resblocks = nn.Sequential(*model)
self.up1 = Up(ngf * 4, ngf * 2, norm_layer, use_bias)
self.up2 = Up(ngf * 2, ngf, norm_layer, use_bias)
self.outc = Outconv(ngf, output_nc)
def forward(self, input):
out = {}
out['in'] = self.inc(input)
out['d1'] = self.down1(out['in'])
out['d2'] = self.down2(out['d1'])
out['bottle'] = self.resblocks(out['d2'])
out['u1'] = self.up1(out['bottle'])
out['u2'] = self.up2(out['u1'])
return self.outc(out['u2'])
class Inconv(nn.Module):
def __init__(self, in_ch, out_ch, norm_layer, use_bias):
super(Inconv, self).__init__()
self.inconv = nn.Sequential(
nn.ReflectionPad2d(3),
nn.Conv2d(in_ch, out_ch, kernel_size=7, padding=0,
bias=use_bias),
norm_layer(out_ch),
nn.ReLU(True)
)
def forward(self, x):
x = self.inconv(x)
return x
class Down(nn.Module):
def __init__(self, in_ch, out_ch, norm_layer, use_bias):
super(Down, self).__init__()
self.down = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3,
stride=2, padding=1, bias=use_bias),
norm_layer(out_ch),
nn.ReLU(True)
)
def forward(self, x):
x = self.down(x)
return x
# Define a Resnet block
class ResBlock(nn.Module):
def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias):
super(ResBlock, self).__init__()
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias)
def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias):
conv_block = []
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias),
norm_layer(dim),
nn.ReLU(True)]
if use_dropout:
conv_block += [nn.Dropout(0.5)]
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias),
norm_layer(dim)]
return nn.Sequential(*conv_block)
def forward(self, x):
out = x + self.conv_block(x)
return nn.ReLU(True)(out)
class Up(nn.Module):
def __init__(self, in_ch, out_ch, norm_layer, use_bias):
super(Up, self).__init__()
self.up = nn.Sequential(
# nn.Upsample(scale_factor=2, mode='nearest'),
# nn.Conv2d(in_ch, out_ch,
# kernel_size=3, stride=1,
# padding=1, bias=use_bias),
nn.ConvTranspose2d(in_ch, out_ch,
kernel_size=3, stride=2,
padding=1, output_padding=1,
bias=use_bias),
norm_layer(out_ch),
nn.ReLU(True)
)
def forward(self, x):
x = self.up(x)
return x
class Outconv(nn.Module):
def __init__(self, in_ch, out_ch):
super(Outconv, self).__init__()
self.outconv = nn.Sequential(
nn.ReflectionPad2d(3),
nn.Conv2d(in_ch, out_ch, kernel_size=7, padding=0),
nn.Tanh()
)
def forward(self, x):
x = self.outconv(x)
return x
def define_D(input_nc, ndf, netD,
n_layers_D=3, norm='batch', use_sigmoid=False, init_type='normal', init_gain=0.02, gpu_id='cuda:0'):
net = None
norm_layer = get_norm_layer(norm_type=norm)
if netD == 'basic':
net = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer, use_sigmoid=use_sigmoid)
elif netD == 'n_layers':
net = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer, use_sigmoid=use_sigmoid)
elif netD == 'pixel':
net = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer, use_sigmoid=use_sigmoid)
else:
raise NotImplementedError('Discriminator model name [%s] is not recognized' % net)
return init_net(net, init_type, init_gain, gpu_id)
# Defines the PatchGAN discriminator with the specified arguments.
class NLayerDiscriminator(nn.Module):
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False):
super(NLayerDiscriminator, self).__init__()
if type(norm_layer) == functools.partial:
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
kw = 4
padw = 1
sequence = [
nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
nn.LeakyReLU(0.2, True)
]
nf_mult = 1
nf_mult_prev = 1
for n in range(1, n_layers):
nf_mult_prev = nf_mult
nf_mult = min(2**n, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult,
kernel_size=kw, stride=2, padding=padw, bias=use_bias),
norm_layer(ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
nf_mult_prev = nf_mult
nf_mult = min(2**n_layers, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult,
kernel_size=kw, stride=1, padding=padw, bias=use_bias),
norm_layer(ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)]
if use_sigmoid:
sequence += [nn.Sigmoid()]
self.model = nn.Sequential(*sequence)
def forward(self, input):
return self.model(input)
class PixelDiscriminator(nn.Module):
def __init__(self, input_nc, ndf=64, norm_layer=nn.BatchNorm2d, use_sigmoid=False):
super(PixelDiscriminator, self).__init__()
if type(norm_layer) == functools.partial:
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
self.net = [
nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0),
nn.LeakyReLU(0.2, True),
nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=use_bias),
norm_layer(ndf * 2),
nn.LeakyReLU(0.2, True),
nn.Conv2d(ndf * 2, 1, kernel_size=1, stride=1, padding=0, bias=use_bias)]
if use_sigmoid:
self.net.append(nn.Sigmoid())
self.net = nn.Sequential(*self.net)
def forward(self, input):
return self.net(input)
class GANLoss(nn.Module):
def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0):
super(GANLoss, self).__init__()
self.register_buffer('real_label', torch.tensor(target_real_label))
self.register_buffer('fake_label', torch.tensor(target_fake_label))
if use_lsgan:
self.loss = nn.MSELoss()
else:
self.loss = nn.BCELoss()
def get_target_tensor(self, input, target_is_real):
if target_is_real:
target_tensor = self.real_label
else:
target_tensor = self.fake_label
return target_tensor.expand_as(input)
def __call__(self, input, target_is_real):
target_tensor = self.get_target_tensor(input, target_is_real)
return self.loss(input, target_tensor)
- Resnet Generator 랑 PatchGAN (NLayerDiscriminator) 구조 이해하기
from __future__ import print_function
import argparse
import os
from math import log10
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, random_split
import torch.backends.cudnn as cudnn
from networks import define_G, define_D, GANLoss, get_scheduler, update_learning_rate
from data import get_training_set, get_test_set
# Training settings
parser = argparse.ArgumentParser(description='pix2pix-pytorch-implementation')
#parser.add_argument('--dataset', required=True, help='gray to color')
parser.add_argument('--batch_size', type=int, default=1, help='training batch size')
parser.add_argument('--test_batch_size', type=int, default=1, help='testing batch size')
parser.add_argument('--direction', type=str, default='b2a', help='a2b or b2a')
parser.add_argument('--input_nc', type=int, default=3, help='input image channels')
parser.add_argument('--output_nc', type=int, default=3, help='output image channels')
parser.add_argument('--ngf', type=int, default=64, help='generator filters in first conv layer')
parser.add_argument('--ndf', type=int, default=64, help='discriminator filters in first conv layer')
parser.add_argument('--epoch_count', type=int, default=1, help='the starting epoch count')
parser.add_argument('--niter', type=int, default=100, help='# of iter at starting learning rate')
parser.add_argument('--niter_decay', type=int, default=100, help='# of iter to linearly decay learning rate to zero')
parser.add_argument('--lr', type=float, default=0.0002, help='initial learning rate for adam')
parser.add_argument('--lr_policy', type=str, default='lambda', help='learning rate policy: lambda|step|plateau|cosine')
parser.add_argument('--lr_decay_iters', type=int, default=50, help='multiply by a gamma every lr_decay_iters iterations')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
parser.add_argument('--cuda', action='store_true', help='use cuda?')
parser.add_argument('--threads', type=int, default=4, help='number of threads for data loader to use')
parser.add_argument('--seed', type=int, default=123, help='random seed to use. Default=123')
parser.add_argument('--lamb', type=int, default=10, help='weight on L1 term in objective')
parser.add_argument('--num', type=int, required=True, help='enter the number of train')
opt = parser.parse_args()
print(opt)
if opt.cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
cudnn.benchmark = True
torch.manual_seed(opt.seed)
if opt.cuda:
torch.cuda.manual_seed(opt.seed)
print('===> Loading datasets')
root_path = "/home/airlab/Oz"
data_set = get_training_set(root_path, opt.direction)
train_size = int(0.9 * len(data_set))
test_size = len(data_set) - train_size
train_set, test_set = random_split(data_set, [train_size, test_size])
#est_set = get_test_set(root_path, opt.direction)
training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batch_size, shuffle=True)
testing_data_loader = DataLoader(dataset=test_set, num_workers=opt.threads, batch_size=opt.test_batch_size, shuffle=False)
device = torch.device("cuda:0" if opt.cuda else "cpu")
print('===> Building models')
net_g = define_G(opt.input_nc, opt.output_nc, opt.ngf, 'batch', False, 'normal', 0.02, gpu_id=device)
net_d = define_D(opt.input_nc + opt.output_nc, opt.ndf, 'basic', gpu_id=device)
criterionGAN = GANLoss().to(device)
criterionL1 = nn.L1Loss().to(device)
criterionMSE = nn.MSELoss().to(device)
# setup optimizer
optimizer_g = optim.Adam(net_g.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
optimizer_d = optim.Adam(net_d.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
net_g_scheduler = get_scheduler(optimizer_g, opt)
net_d_scheduler = get_scheduler(optimizer_d, opt)
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
# train
for iteration, batch in enumerate(training_data_loader, 1):
# forward
real_a, real_b = batch[0].to(device), batch[1].to(device)
fake_b = net_g(real_a)
######################
# (1) Update D network
######################
optimizer_d.zero_grad()
# train with fake
fake_ab = torch.cat((real_a, fake_b), 1)
pred_fake = net_d.forward(fake_ab.detach())
loss_d_fake = criterionGAN(pred_fake, False)
# train with real
real_ab = torch.cat((real_a, real_b), 1)
pred_real = net_d.forward(real_ab)
loss_d_real = criterionGAN(pred_real, True)
# Combined D loss
loss_d = (loss_d_fake + loss_d_real) * 0.5
loss_d.backward()
optimizer_d.step()
######################
# (2) Update G network
######################
optimizer_g.zero_grad()
# First, G(A) should fake the discriminator
fake_ab = torch.cat((real_a, fake_b), 1)
pred_fake = net_d.forward(fake_ab)
loss_g_gan = criterionGAN(pred_fake, True)
# Second, G(A) = B
loss_g_l1 = criterionL1(fake_b, real_b) * opt.lamb
loss_g = loss_g_gan + loss_g_l1
loss_g.backward()
optimizer_g.step()
print("===> Epoch[{}]({}/{}): Loss_D: {:.4f} Loss_G: {:.4f}".format(
epoch, iteration, len(training_data_loader), loss_d.item(), loss_g.item()))
update_learning_rate(net_g_scheduler, optimizer_g)
update_learning_rate(net_d_scheduler, optimizer_d)
# test
avg_psnr = 0
for batch in testing_data_loader:
input, target = batch[0].to(device), batch[1].to(device)
prediction = net_g(input)
mse = criterionMSE(prediction, target)
psnr = 10 * log10(1 / mse.item())
avg_psnr += psnr
print("===> Avg. PSNR: {:.4f} dB".format(avg_psnr / len(testing_data_loader)))
#checkpoint
if epoch % 50 == 0:
if not os.path.exists("checkpoint/{}".format(opt.num)):
os.mkdir("checkpoint/{}".format(opt.num))
net_g_model_out_path = "checkpoint/{}/netG_model_epoch_{}.pth".format(opt.num, epoch)
net_d_model_out_path = "checkpoint/{}/netD_model_epoch_{}.pth".format(opt.num, epoch)
torch.save(net_g, net_g_model_out_path)
torch.save(net_d, net_d_model_out_path)
print("Checkpoint saved to {}".format("checkpoint"))
print(opt)
- train code: hyper parameter 중에서 주로 learning rate랑 batch size, epoch 조정 했다.
'ArtificialIntelligence > DeepLearning' 카테고리의 다른 글
[GoogleML] Practical Advice for Using ConvNets (0) | 2023.10.07 |
---|---|
[Slurm] Dataset Condensation model 돌리기 (feat. 공용GPU) (0) | 2023.09.28 |
[OpenAI] ChatGPT Prompt 개발 (0) | 2023.09.18 |
🎠 CycleGan 이미지 생성 모델 (0) | 2022.07.02 |
🎨 GAN(Generative Adversarial network) 이란? 👩💻 (0) | 2022.06.24 |