KimAnt ๐Ÿฅฆ

KimAnt ๐Ÿฅฆ

  • SohyeonKim (364) N
    • ComputerScience (107) N
      • ProcessingInMemory (7) N
      • FaultTolerance (2)
      • OperatingSystem (21)
      • FreeBSD (23)
      • DesignPattern (1)
      • ComputerNetwork (12)
      • FullStackProgramming (17)
      • DockerKubernetes (16)
      • Database (5)
    • ArtificialIntelligence (72)
      • ECCV2024 (11)
      • WRTNCampusLeader (4)
      • PaperReading (14)
      • 2023GoogleMLBootcamp (33)
      • DeepLearning (10)
    • Programming (27)
      • Swift (17)
      • JAVA (3)
      • CodingTest (2)
      • Algorithms (5)
    • Experiences (37)
      • KIST Europe Internship (15)
      • Activities (8)
      • Competition (6)
      • International (7)
      • Startup (1)
    • iOS (41)
      • AppProject (10)
      • AppleDeveloperAcademy@POSTE.. (9)
      • CoreMLCreateML (8)
      • MC3Puhaha (4)
      • NC2Textinit (10)
      • MACSpaceOver (0)
    • GitHub (5)
    • UniversityMakeUsChallenge (23)
      • UMCActivities (3)
      • UMCiOS (12)
      • UMCServer (7)
      • BonheurAppProject (1)
    • Science (33)
      • 2022GWNRSummer (13)
      • 2023GWNRWinter (8)
      • 2024GWNRWinter (2)
      • Biology (6)
    • Etc (16)
      • StudyPlanner (13)
  • ํ™ˆ
  • ํƒœ๊ทธ
  • ๋ฐฉ๋ช…๋ก
RSS ํ”ผ๋“œ
๋กœ๊ทธ์ธ
๋กœ๊ทธ์•„์›ƒ ๊ธ€์“ฐ๊ธฐ ๊ด€๋ฆฌ

KimAnt ๐Ÿฅฆ

์ปจํ…์ธ  ๊ฒ€์ƒ‰

ํƒœ๊ทธ

์ˆ˜์น˜์ƒ๋Œ€๋ก  ์ค‘๋ ฅํŒŒ ๋”ฅ๋Ÿฌ๋‹ kernel docker OS ๋จธ์‹ ๋Ÿฌ๋‹ Programming 3D PRINTING server AI umc app Container Google biohybrid Apple process swift ios

์ตœ๊ทผ๊ธ€

๋Œ“๊ธ€

๊ณต์ง€์‚ฌํ•ญ

์•„์นด์ด๋ธŒ

Trigger Word Detection(1)

  • [GoogleML] Sequence Models & Attention Mechanism

    Basic Models input ํ”„๋ž‘์Šค ๋‹จ์–ด๋“ค์„ ๋ฐ›๋Š” ๋ถ€๋ถ„ -> ์ธ์ฝ”๋” output ์˜์–ด ๋‹จ์–ด๋“ค์„ ์ถœ๋ ฅ -> ๋””์ฝ”๋” + ์ถฉ๋ถ„ํ•œ ์–‘์˜ input / output ๋‹จ์–ด ์Œ๋“ค์ด ์žˆ๋‹ค๋ฉด, ํ•ด๋‹น ๊ตฌ์กฐ๋„ working ๋งŽ์ด ๊ธธ์ง€ ์•Š์€ ๋ฌธ์žฅ์„ output์œผ๋กœ ๋‚ธ๋‹ค๋ฉด image captioning๋„ ๊ฐ€๋Šฅ sequence to seq image to seq Picking the Most Likely Sentence condition์œผ๋กœ ํ”„๋ž‘์Šค์–ด ๋‹จ์–ด๊ฐ€ ๋“ค์–ด์™”์„ ๋•Œ, ์˜๋‹จ์–ด์˜ ํ™•๋ฅ ์„ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ -> conditional probablity ๋žœ๋คํ•˜๊ฒŒ ๋ฝ‘์•„๋‚ด๋‹ค๊ฐ€๋Š” ์ด์ƒํ•œ ๋ฌธ์žฅ์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ํ™•๋ฅ  ๊ฐ’์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๋ฌธ์žฅ์„ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์ด ์ ํ•ฉํ•จ ๋”ฐ๋ผ์„œ most likely english sentence ์œ— ๋ฌธ์žฅ์ด ๋”..

    2023.10.30
์ด์ „
1
๋‹ค์Œ
Git-hub Linked-in
ยฉ 2018 TISTORY. All rights reserved.

ํ‹ฐ์Šคํ† ๋ฆฌํˆด๋ฐ”