[GoogleML] Transfer Learning & End-to-end Deep Learning

2023. 9. 30. 20:19ใ†ArtificialIntelligence/2023GoogleMLBootcamp

 

 

 

Transfer Learning (์ „์ดํ•™์Šต)

์ „์ดํ•™์Šต - ํŠน์ • task์— ๋งž์ถฐ ํ•™์Šต์‹œํ‚จ ๋„คํŠธ์›Œํฌ -> ๋‹ค๋ฅธ task์— ์ ์šฉ

last layer๋ฅผ ๋ณ€๊ฒฝ

 

 

 

๊ฒฝ์šฐ์— ๋”ฐ๋ผ ์—ฌ๋Ÿฌ layer๋ฅผ ๋ง๋ถ™์ผ ์ˆ˜๋„ ์žˆ๋‹ค

 

 

 

์–ด๋– ํ•œ ๊ฒฝ์šฐ์— ์‚ฌ์šฉํ•˜๋Š”๊ฐ€?

์ƒ๋Œ€์ ์œผ๋กœ ์ ์€ ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ€์ง„ task์— ๋Œ€ํ•˜์—ฌ

ํ’๋ถ€ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ€์ง„ task๋กœ ์šฐ์„  ํ•™์Šตํ•œ ์ดํ›„ -> knowledge๋ฅผ transfer (์ „์ดํ•™์Šต)

์ด๋•Œ ๊ธฐ์กด task๋ณด๋‹ค ์ƒˆ๋กœ์šด task์˜ ์ค‘์š”๋„๊ฐ€ ๋” ๋†’์Œ 

 

 

 

์–ด๋–ค ์ƒํ™ฉ์—์„œ ์ „์ดํ•™์Šต์ด ์œ ์šฉํ•œ๊ฐ€?

 

 

 

Multi-task Learning

 

 

 

multi task learning

one image can have multiple label

 

 

 

 

 

 

์–ธ์ œ multi task learning์ด ์œ ์šฉํ•œ๊ฐ€?

์ด ๋ฐฉ๋ฒ•๋ณด๋‹ค๋Š”, ์ „์ดํ•™์Šต์ด ๋” ๋งŽ์ด ์‚ฌ์šฉ๋œ๋‹ค.

ํ•˜๋‚˜์˜ ๋„คํŠธ์›Œํฌ๋กœ ์—ฌ๋Ÿฌ ํƒœ์Šคํฌ๋ฅผ ์ •์˜ํ•˜๋Š” ๊ฒƒ์ด ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— 

 

 

 

What is End-to-end Deep Learning?

ํ†ต์งธํ•™์Šต (end to end learning)

 

 

 

 

 

 

enough data๊ฐ€ ์žˆ๋‹ค๋ฉด -> end to end approach ์ ์šฉ ๊ฐ€๋Šฅ 

 

 

 

input์—์„œ output์œผ๋กœ ๋ฐ”๋กœ mapping 

์ค‘๊ฐ„ ์ฒ˜๋ฆฌ ๋‹จ๊ณ„ ์—†์ด -> end to end learning

(๋” ๋งŽ์€ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ชจ์ธ ๊ฒฝ์šฐ์—)

 

 

 

Whether to use End-to-end Deep Learning

End to end learning์˜ ์žฅ๋‹จ์ 

 

 

 

๋‚ด๊ฐ€ ์›ํ•˜๋Š” X -> Y mapping์ด ๋ฌด์—‡์ธ์ง€, ์–ด๋– ํ•œ ํƒœ์Šคํฌ์— ์˜์กดํ•˜๋Š”์ง€ ํŒŒ์•…ํ•ด์•ผํ•œ๋‹ค