ArtificialIntelligence/PaperReading(14)
-
[Paper reading] DenseNet
DenseNet Abstract Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forw..
2023.08.22 -
[Paper reading] GoogleNet
Inception Module The fundamental way of solving both issues would be by ultimately moving from fully connected to sparsely connected architectures, even inside the convolutions. adding an alternative parallel pooling path As these โInception modulesโ are stacked on top of each other, their output correlation statistics are bound to vary; as features of higher abstraction are captured by higher l..
2023.08.18 -
[Paper reading] ResNet
ResNet Intro Short Cut connections adding neither extra params nor computational complexity 100 ~ 1000 layers / 3.57% Conclusion ์ฅ์ ์์ด๋์ด๊ฐ ๋ ์ฐฝ์ ์ด๋ค. ๊ฐ๋จํ ์์ด๋์ด๋ก ๋คํธ์ํฌ์ ๊น์ด๋ฅผ ๋งค์ฐ ๊น๊ฒ ์์๋ค. optimization ๋ฌธ์ ๋ฅผ ํด๊ฒฐ, ์ฑ๋ฅ ํฅ์ ๋จ์ ์ ์ด๋ฌํ skip connection์ ์ฌ์ฉํ๋ฉด ์ฑ๋ฅ์ด ๋ ์ ๋์ค๋ ์ง ๊ธฐ์กด์ gradient descent ์ ์ ์์ ๋ฐฉํฅ์ด ๋ฌ๋ผ์ง์ง ์๋? ๊ฐ์ ํ ์ ๋ค๋ฅธ function๋ค๋ skip ํด๋ณด๊ธฐ ๊ตณ์ด - x, + x ๋์ด์ผ ํ๋ ์ด์ ? + x, - x ์์๋ก ์งํ๋๋ฉด ์ด๋ ํ ์ฐจ์ด๊ฐ ์์์ง ์์ฐจ๋ผ๋ ๊ฐ๋ ์ด ์ด๋์์ ์ฒ์ ๋์์๊น(relate..
2023.08.16 -
[Paper reading] VGGNet 2023.08.16