[GoogleML] Optimization Problem

2023. 9. 13. 13:40ใ†ArtificialIntelligence/2023GoogleMLBootcamp

 

 

 

Normalizing Inputs

normalize input features

 

 

 

๋ณด๋‹ค ์ˆ˜์›”ํ•˜๊ฒŒ ์ˆ˜๋ ดํ•  ์ˆ˜ ์žˆ๋‹ค

 

 

 

Vanishing / Exploding Gradients

๊ฒน๊ฒน์ด ์Œ“์ธ W -> weights

 

 

 

b = 0 ๋ผ๊ณ  ๊ฐ€์ •ํ•ด๋ณด์ž

1.5 -> ์ง€์ˆ˜์ ์œผ๋กœ ์ฆ๊ฐ€ (gradient ํญ๋ฐœ)

0.5 -> ์ง€์ˆ˜์ ์œผ๋กœ ๊ฐ์†Œ (gradient vanishing)

layer๊ฐ€ ๊นŠ๊ฒŒ ์Œ“์ผ์ˆ˜๋ก, ํ•™์Šต์ด ์–ด๋ ค์›Œ์ง€๋Š” ๋ฌธ์ œ

์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์›จ์ดํŠธ ์ดˆ๊ธฐํ™”

 

 

 

Weight Initialization for Deep Networks

weight init ์ค‘์š”ํ•˜๋‹ค

gradient๊ฐ€ ํญ๋ฐœํ•˜๊ฑฐ๋‚˜ ์‚ฌ๋ผ์ง€๊ฒŒ ํ•˜์ง€ ์•Š๊ธฐ ์œ„ํ•ด์„œ

 

 

 

Numerical Approximation of Gradients

๋‹จ๋ฐฉํ–ฅ / ์–‘๋ฐฉํ–ฅ grad ๊ณ„์‚ฐ

 

 

 

์šฐ์ธก

 

 

 

Gradient Checking

์„ธํƒ€๋กœ ํ•œ ๋ฒˆ์— ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. model parameter๋“ค์„ ๋ชจ๋‘ ํ•œ ๋ฒˆ์— ์„ธํƒ€๋กœ ํ‘œ๊ธฐ

 

 

 

์ด ์ˆ˜์‹์€ ์–ด๋–ค ๊ฐ’์„ ํ™•์ธํ•˜๋ผ๋Š”๊ฑฐ์ง€ . . ? ์ž˜ ๋ชจ๋ฅด๊ฒ ๋‹ค. 

cos ์œ ์‚ฌ๋„๋„ ์•„๋‹Œ ๊ฒƒ ๊ฐ™๊ณ ,

ํŽธ๋ฏธ๋ถ„ ๊ฐ’์ด๋ž‘ ์›๋ž˜ ํ•จ์ˆ˜ ๋ฏธ๋ถ„ ๊ฐ’ ์ฐจ์ด๋ฅผ ๋‘ norm์˜ ํ•ฉ์œผ๋กœ ๋‚˜๋ˆˆ๋‹ค. . ?

 

 

 

Gradient Checking Implementation Notes

1. ๋ฏธ๋ถ„ ๊ฐ’์„ ๊ณ„์‚ฐํ•˜๋Š” ์—ฐ์‚ฐ์€ computationalํ•˜๊ฒŒ ๋น„์‹ผ ์—ฐ์‚ฐ, ํ•™์Šต ๊ณผ์ •์—์„œ๋Š” ํ™•์ธํ•˜์ง€ ๋ง์ž

2. ๋ฒ„๊ทธ๊ฐ€ ์—†๋Š”์ง€, ์ˆ˜์‹ ์ œ๋Œ€๋กœ ์ž‘์„ฑ๋œ๊ฑด์ง€ ํ™•์ธํ•˜๊ธฐ

3. ๊ทœ์ œ ํ•ญ์ด ์žˆ๋Š” ๊ฒƒ์€ ์•„๋‹Œ์ง€

4. dropout ์ ์šฉํ•˜๋ฉด cost func ์ œ๋Œ€๋กœ ๊ณ„์‚ฐํ•˜๊ธฐ ๋งค์šฐ ์–ด๋ ต๋‹ค -> keepprob์œผ๋กœ drop ๊บผ๋‘๊ณ  ํ™•์ธ -> ์ดํ›„์— ์กฐ์ • 

5. random initialization (0์— ๊ฐ€๊นŒ์šธ ๋•Œ๋งŒ backpropagation์ด ์ œ๋Œ€๋กœ ๋™์ž‘ํ•  ์ˆ˜ ๋„ ์žˆ๋‹ค.)

 

 

 

 

 

'ArtificialIntelligence > 2023GoogleMLBootcamp' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

[GoogleML] Adam Optimizer  (0) 2023.09.20
[GoogleML] Optimization Algorithms  (0) 2023.09.20
[GoogleML] Regularizing Neural Network  (0) 2023.09.12
[GoogleML] Setting up Machine Learning  (0) 2023.09.12
[GoogleML] Neural Networks and Deep Learning ์ˆ˜๋ฃŒ  (0) 2023.09.12