recognition(2)
-
ECCV 2024 Day3 - Oral: Recognition
ECCV 2024. 10. 01. Tuesday Oral 2B: Recognition1) Generative Models Gold Room์์ ์์ฑ๋ชจ๋ธ ์ค๋ด ์ธ์ ์ด ์์๋ค. ์์ฒญ์์ฒญ์์ฒญ ๋์ ํ์ด์๋ค ๐ฒ ๋ฐํ ๋ฃ๋ค๊ฐ ํฐ๋ชจ์ ์ฌ๋ผ๋ฉ๊ฐ ๋ฑ์ฅํด์ ๋๋ฌด ๋ฐ๊ฐ์ ๋ค. ๊ทธ๋ฐ๋ฐ ์ฐ์์ธ ์ฌ์ง๋ค์ ์ ๋ ๊ฒ ๋ง ์ฌ์ฉํด๋ ๊ด์ฐฎ์๊ฑด๊ฐ..? ์ด๋ฐ ์๊ฐ๋ ๋ค์๋ค. AI ๋ชจ๋ธ์ ๋๋ฆด ๋, ์ด์๊ถ์ ๋ณ๊ฐ์ ๋ฌธ์ ์ธ๊ฑด๊ฐ .?? ๋ฌดํผ .. ์๋ฌด๋๋ ์๊ฐ์ ์ผ๋ก ๋ณด์ฌ์ง๋๊ฒ ๋ง์์, ์ฌ๋ฏธ์๊ฒ ๋ค์์ง๋ง,๊ธฐ์ ์์ฒด์ ์๋ฏธ๊ฐ ์๋ค๊ณ ๋๋ผ์ง๋ ๋ชปํ๋ค. 2) Recognition # Google Mobile-Net MobileNetV4: Universal Models for the Mobile Ecosyst..
2024.11.13 -
[Paper reading] Transformers for image recognition, ViT
Transformers for image recognition Model overview. We split an image into fixed-size patches, linearly embed each of them, add position embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder. In order to perform classification, we use the standard approach of adding an extra learnable “classification token” to the sequence. Abstract While the Transformer archite..
2023.08.28